Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes
نویسندگان
چکیده
Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH) genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg). Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future.
منابع مشابه
Biogas production from wheat straw: community structure of cellulose-degrading bacteria
Background: Wheat straw is one of the most abundant crop residues produced in the world, making it highly interesting as a substrate for biogas production. However, due to the complex structure, its degradability and gas yield are low. The degradability can be improved by pre-treatment, making the material more accessible to microbial degradation. Methods: To investigate the microbial response ...
متن کاملThe microbial community structure in industrial biogas plants influences the degradation rate of straw and cellulose in batch tests
BACKGROUND Materials rich in lignocellulose, such as straw, are abundant, cheap and highly interesting for biogas production. However, the complex structure of lignocellulose is difficult for microbial cellulolytic enzymes to access, limiting degradation. The rate of degradation depends on the activity of members of the microbial community, but the knowledge of this community in the biogas proc...
متن کاملEubacteria and archaea communities in seven mesophile anaerobic digester plants in Germany
BACKGROUND Only a fraction of the microbial species used for anaerobic digestion in biogas production plants are methanogenic archaea. We have analyzed the taxonomic profiles of eubacteria and archaea, a set of chemical key parameters, and biogas production in samples from nine production plants in seven facilities in Thuringia, Germany, including co-digesters, leach-bed, and sewage sludge trea...
متن کاملThe core populations and co-occurrence patterns of prokaryotic communities in household biogas digesters
BACKGROUND Household biogas digesters are widely used to harvest energy in rural areas of developing countries. Understanding core prokaryotic communities, their co-occurrence patterns, and their relationships to environmental factors is important to manage these small-scale anaerobic digestion systems effectively. In this study, 43 household biogas digesters were collected across eight provinc...
متن کاملMicrobial community structure in a biogas digester utilizing the marine energy crop Saccharina latissima
Seaweed is a highly attractive marine crop for the production of biofuels, due to its rapid growth rate as well as high polysaccharide and low lignin content. One appealing exploitation route is the production of biogas by anaerobic digestion. Interestingly, despite the compositional differences between seaweed and lignocellulosic biomass, available data indicate that conditions and inocula tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015